A Large-scale Study on API Misuses in the Wild

Xia Li Jiajun Jiang Samuel Benton
Department of Software Engineering and College of Intelligence and Department of Computer Science,
Game Design, Kennesaw State University Computing, Tianjin University = The University of Texas at Dallas

xli37 @kennesaw.edu jlangjiajun@tju.edu.cn Samuel.Bentonl@utdallas.edu
Yingfei Xiong Lingming Zhang
Key Laboratory of High Con dence Software Department of Computer Science,
Technologies (MoE); DCST, Peking University University of lllinois at Urbana-Champaign
xiongyf@pku.edu.cn lingming@illinois.edu
Abstract—API| misuses are prevalent and extremely harmful. AP Thread.start() , While Thread.run() is often misused,

Despite various techniques have been proposed for API-misusewhich does not create new threads. Therefore, analyzing the
detection, it is not even clear how different types of API misuses panaviors of API misuses is essential and can provide practical

distribute and whether existing techniques have covered all major . . .
types of API misuses. Therefore, in this paper, we conduct the guidance for software development, especially the detection

rst large-scale empirical study on API misuses based on 528,546 Of APl misuses. Such misuse behaviors can be potentially
historical bug- xing commits from GitHub (from 2011 to 2018). obtained from historical bug xes.

By leveraging a state-of-the-art ne-grained AST differencing A large number of historical bug xes are publicly avail-
tool, GumTree, we extract more than one million bug-xing ap1a on open-source platforms (e.g., GitHub [3] and Source-
edit operations, 51.7% of which are APl misuses. We further . .

systematically classify API misuses into nine different categories Forge [4]) and issue tracking Syst'ems (e'g'j JIRA [3]). Many
according to the edit operations and context. We also extract researchers have conducted various studies to analyze bug
various frequent API-misuse patterns based on the categories xes and have many ndings. For example, Martinez and
and corresponding operations, which can be complementary to Monperrus [6] found that most bug xes are related to more
existing API-misuse detection tools. Our study reveals various than one source le, and statement-level code changes (e.g
practical guidelines regarding the importance of different types . - L I
of APl misuses. Furthermore, based on our dataset, we perform !nsertlng or dleletl'ng a statement) are most prevalent by analyz-
a user study to manually analyze the usage constraints of 10 ing 89,993 historical bug xes. Even though these researchers
patterns to explore whether the mined patterns can guide the have studied historical bug xes, they only examined a small
design of future API-misuse detection tools. Specically, we nd dataset, and the ndings could be limited. In this paper, we
that 7,541 potential misuses still exist in latest Apache projects conduct a study on API misuses by analyzing much more

and 149 of them have been reported to developers. To date, 57 h ive b ina dataset th . K
have already been con rmed and xed (with 15 rejected misuses comprenhensive bug- xing dataset than any prior work.

correspondingly). The results indicate the importance of studying ~ Many techniques de ne API misuses as violations of certain
historical API misuses and the promising future of employing our frequent APl usage patterns which are mined from source

mined patterns for detecting unknown API misuses. code [7]-[11]. These techniques were evaluated to be effective
Index Terms—Pattern generation, Program adaptation, Code o some kinds of misuses. However, a recent study on state-
abstraction of-the-art APIl-misuse detectors [1] shows that APl misuses
are prevalent and existing APIl-misuse detectors suffer from
extremely low precision and recall on the widely used API-
Over the past decades, software systems have been widgiguse dataset MBENCH [12]. MUBENCH includes only
used in almost all aspects of human lives, and are making &% APl misuses from 33 real-world projects, which not only
lives more and more convenient. However, software systeffigkes it hard to analyze the distribution of various API
also inevitably suffer from bugs or faults, which can incufisuses but also incurs dataset over tting issues for evaluating
signi cant loss of properties and even lives. During moder@Xisting API-misuse detection techniques.
software development, developers always reuse ApplicationDue to the limited amount of dataset in previous studies
Programming Interfaces (APIls) provided by third-party liof bug- xing and APl misuses, in this paper, we conduct a
braries and frameworks rather than implementing from scratgipre systematic and extensive empirical study by analyzing
to improve work ef ciency and code quality. As a result, APR large-scale bug- xing dataset. We start with mining the
related bugs spread widely due to API misuses, reducing sdfistorical repositories from GitHub Archive [13] that records
ware performance or causing software crashes [1], [2]. In Jatg public GitHub timeline dataset. Then, we extract all bug-

for example, the correct way to create a new thread is to cafing commits of Java projects from 2011 to 2018 according
to speci ¢ search criteria, resulting in 528,546 bug- xing com-

T Corresponding author. mits. Finally, we extract ne-grained edit operations on AST

|. INTRODUCTION

(Abstract Syntax Tree) of buggy and xed source code via same class.

leveraging GumTree [14] to identify APl misuses. Following Application. Finally, we explore whether the dataset
existing studies [1], we classify API misuses into different and patterns can be applied to API-misuse detection
categories and statistically analyze their distributions. From by leveraging 10 patterns and manually-de ned heuristic
the statistical results, we observe various practical guidelines rules after analyzing the corresponding repair histories in
regarding the importance of different categories of APl mis- our dataset. The experimental results show that misuses
uses. For example, API calls (missing/redundant) are the most extracted from historical records still exist in the latest
frequent (34.05% of all APl misuses) and synchronization is versions of Apache projects (149 of them are reported
the least frequent (0.06% of all APl misuses). In addition, to developers, 57 have already been con rmed and xed,
we nd that about 38.33% API misuses are replacing APl and 15 are rejected).

components (i.e., arguments, receiver, or name), which have

never been systematically explored by any prior studies. Il. BACKGROUND AND RELATED WORK

Inspired by the statistical results, we extract a large set|n this section, we rst introduce previous studies on his-

of frequent API-misuse patterns for each category, and catgfical bug xes and then discuss existing techniques working
out two studies on API-misuse detection. (1) API-misus§y API-misuse detection.

detection in MUBENCH. Following previous studies [1], [15],
we analyze how many APIl-misuse patterns iwBENCH can
also be found in the historical bug xes and compare the During modern software development, a large number of
results with existing state-of-the-art techniques. The resuhistorical bug xes get accumulated on open-source platforms
show that 12 out of 32 unique patterns inUBENCH have (e.g., GitHub and SourceForge) and issue tracking systems
already occurred before, and 7 of them cannot be detecl{edy., JIRA). Understanding and analyzing the historical bug
by any existing techniques, demonstrating the possibility tees can potentially provide practical guidelines for manual
build more effective misuse detection tools via analyzingr automated bug detection [16]-[19], localization [20]-[25],
large-scale historical bug xes. (2) API-misuse detection iand repair [26]-[30]. Therefore, various studies have been
the wild. Based on our dataset, we perform a user study donducted on historical bug xes. Zhong and Su [31] built
manually analyze the usage constraints of 10 representativbug- xing extraction tool named BugStat and analyzed
API-misuse patterns to explore whether the mined pattenrmore than 9,000 real bug xes from six popular open-source
can guide the design of future APIl-misuse detection tools. TBava projects. They found that most bug xes only update
results of the experiments on 688 Apache projects show tlisting source code les and do not add or delete source
the misuses extracted from historical records still exist in thies. Additionally, they found that most bug xes are related
latest projects (7,541 potential API misuses in total). We hateif conditions, which is also con rmed by Soto et al. [32].
reported 149 misuses to developers. Up to now, 57 of thdPan et al. [33] also analyzed the distribution of different bug-
have already been con rmed and xed while 15 are rejectecking patterns from seven open-source projects. They found
The promising initial results indicate that the misuse pattertisat updating method call parameters ahdconditions are
complement existing approaches and can potentially improiee most common bug xes. Recently, the benchmark De-
the practicability of future API-misuse detection techniquesfects4J [34] which includes various real bugs has been widely
In summary, this paper makes the following contributionsiused in the eld of software debugging. Sobreira et al. [35]
Dataset. A publicly available dataset including 528,546studied 395 bugs in Defects4J and found that the top-3 most
historical bug- xing commits from GitHub (from 2011 applied bug- xing actions (77% of the total bugs) are addition
to 2018). of method calls, conditionals, and assignments. Martinez et
Study. An extensive study to analyze API misuses in thal. and Madeiral et al. proposed different bug detection tools
wild and a systematic classi cation of them via statiComing [36] and PPD [37] respectively) and evaluated them
analysis. on Defects4J benchmark with promising performance.
Patterns. A large set of APIl-misuse patterns, which Besides, there were also studies on domain-specic bug
complement existing API-misuse detection tools and camatterns or bug pattern distribution across different projects.
be used for detecting unknown APl misuses in the wildVan et al. [38] used the card-sorting approach to analyze
Guidelines. Various practical guidelines regarding thehe characteristics of bugs in Blockchain systems. Meng et
importance of different types of API misuses, such as (&). [39] conducted an empirical study on StackOver ow posts
among the API misuses covered by prior techniques, ARdlated to code security, which revealed the huge gap between
call is the most frequent (34.05%) while synchronizatiosecurity theory and coding practices, and informed effective
is the least frequent (0.06%), (2) Replaced API misusesecure coding assistance. Similarly, Hanam et al. [40] studied
not covered by any prior techniques, account for ththe bug patterns in JavaScript projects and found that the
largest portion among all misuses (38.33%), (3) misusame bug- xing patterns exist among different JavaScript
patterns related to clagava.lang.String account for projects. Additionally, this nding was further con rmed on
the vast majority of all patterns, and (4) most frequerltava projects by Yue et al. [41] and Nguyen et al. [42].
Replaced API-misuse patterns are related to APIs in tRay et al. [43] found that although source code is highly

A. Analysis of Historical Bug Fixes

repetitive and predictable (like natural languages), the buggyAlthough various techniques have been proposed for de-
code tends to be unnatural. After comparing with differenécting different types of API misuses, it is not even clear
statistical models, they found that “entropy” is a relativeljiow different types of APl misuses distribute among all
good model to measure the similarity between code fragmem$l misuses or projects. Whether the existing techniques
which can be used in search-based bug- xing approaches.have covered all major types of API misuses is also not
Although various existing studies have already conducténlestigated. Furthermore, the recent widely used APIl-misuse
on general software bugs, the APl misuses have not bedataset MBENCH [12] includes only limited number of API
systematically explored yet. Therefore, we aim to performisuses, and is insuf cient for evaluating API-misuse detec-
an extensive study on the categorization and distribution whn techniques. Therefore, in this work, we aim to perform
API misuses in the wild, which complements existing rea systematic and extensive empirical study to characterize the
search. Furthermore, to the best of our knowledge, our studigtribution of various types of APl misuses in the wild and
involves 528,546 historical bug- xing commits from open-construct a much larger dataset for API-misuse detection.
source projects and represents the most extensive study on

historical bug xes to date. lIl. EMPIRICAL STUDY

In this section, we introduce how we construct our dataset
and conduct our study. We rst introduce the collection of the

API usage is often subject to certain constraints [1]. Falataset used in our study (Section IlI-A), and then introduce
example, a resource must be released or closed after it is ushd.categorization of APl misuses (Section 11I-B). Finally, we
Violations of such usage patterns are regarded as API misugsiscuss how we apply source-code differencing to infer API
A large number of techniques have been proposed to detedsuses from bug xes (Section IlI-C).

API misuses automatically over the past decades.

Most approaches utilize data mining techniques to deté%t
APl misuses. Livshits et al. [44] introduced DynaMiner, We aim to mine API-misuse patterns from all bug- xing
aiming to mine software revision histories to detect misus€§mmits of Java projects on GitHub. To collect our dataset,
violating method pairs or certain mined state machines. Sine rst download all public GitHub events for all program
larly, Li and Zhou [45] proposed PR-Miner to extract implicitanguages from GitHub Archive [13] between 2011 and 2018.
programming rules of APIs by leveraging frequent items&¥e then focus on Java projects and exclude all test cases since
mining approaches on source code. Acharya and Xie [#)ey are not functional parts and cannot re ect APl usages.
proposed to mine speci cations from static program tracedext, following prior work [53], we identify a commit as a
Although such techniques utilize different data sources, theyg X if its commit message contains the keywords (* X"
share the same assumption that the more frequent a pat@frisolve” or “repair”’) and (“bug” or “failure” or “issue” or
is, the higher possibility a pattern is correct. Other simila@rror” or “fault” or “defect” or “aw" or “glitch”). Since
techniques also include DMMC [2], [46], GrouMiner [47],the commit message may not identify bug- xing commits
COLIBRI/ML [7], etc. Additionally, Wasylkowski et al. [8] accurately, we randomly select 100 commit samples, and two
and Nguyen et al. [48] proposed to employ graph theories faythors independently analyze them to check whether they are
mining programming artifacts. actual bug xes. The result is that 94% of the identi ed bug-

Researchers have also proposed data-mining-based te¥lg commits are real bug xes, which provides us more
niques to detect other speci ¢ types of API misuses. William@on dence for the subsequent analysis. We also keep only
et al. [19] and Hovemeyer et al. [18] targeted missingnique commits by removing duplicates. Next, we download
NULL pointer checks, while Thummalapenta and Xie focuseé@e source les before and after the code change for each
on exception-handling related misuses [10] and neglectd!d- Xing commit. To mitigate the impact of irrelevant code
condition misuses [11]. More recently, Liang et al. [17] aimeBhanges, we discard commits or les that meet any of the
at detecting missing NULL pointer and resource-leaking miéollowing criteria.
uses (e.g., missing API invocations to close resource accesses) Commits with changes involving more than ve Java les
via analyzing existing bug xes of the same projects. or six lines of source code [53], [54], since such commits

Besides data mining, researchers also employed pro- may include many changes not related to bug xes.
gram analysis and machine learning for APl-misuse detec- Non-Java les as they are irrelevant to Java APl misuses.
tion. Ramanathan et al. proposed CHRONICLER [49] and Java les that deleted or newly introduced in the commits.
RGJO7 [50], utilizing path-sensitive control- ow or data- ow As a result, we nally get 528,546 bug- xing commits
analysis to infer function precedence protocols or predicatgcluding 220,053 projects and 744,000 pairs of buggy and
Wasylkowski and Zeller [51] proposed TIKANGA to combinexed les) for further APl-misuse pattern mining.
static analysis with model checking for mining Computation o)

Tree Logic (CTL) formulas. Nguyen et al. [52] leveraged: Categorization of APl Misuses

Hidden Markov Model to check anomalies of call sequences.Following prior study [1], we de ne a\P| misuseas a pair
Most recently, Wen et al. [15] applied mutation analysis tof a violation type and an APIl-usage element (e.g., API call,
discover APl misuse patterns to improve the state-of-the-aiteration, condition, and exception handling) involved in a bug

B. Studies on API-misuse Detection

Data Collection

X. Besides themissingandredundantviolation types studied /; replaced arguments
in prior study [1], in this paper, we further investigate the—- row=Math.abs(rand. ~ nextini(seed) %data.length-1);
type ofreplaced describing that an AP is incorrectly invoked;+:epr|2‘é”e=§"?]t2£gs(ra”d' nextint() %(data.length-1));
and should be replaced with another one. This type of AL nval=tmp1.substring(0,tmp1. indexOf ("\™)):
misuses has never been systematically studied before, but++ nVal=tmpl.substring(1,tmpl. lastindexOf ("\"™));
prevalent in real-world projects (will be shown in the followinc’ rep;;tegmgﬁtm; rﬁt”dz a::rgrtljmemcsreateStatement()
sections). In total, we classify APl misuses into four basi++ preparedstatement stmt=con.
categories, including Condition, Exception, Synchronizatic prepareStatement(sql)
and API call, each of which consists of some specic sul// "eplaced receiver _

. . --- return this_path .equals(that_path);
categories. In the following, we demonstrate each category+++ return Objects .equals(this_path, that_path);

API misuses in detail.

Condition. This category includes missing and redundant Fig. 1: Examples of replaced bugs

guard conditions for certain API invocations. Following theéhat we classify this type of code changes as an independent
previous study [1], we further categorize it into the followingne rather than a sub-category of Condition.

three sub-categories:

API call. Previous studies have focused on missing [45], [46]

NULL checks.This sub-category indicates removing oand redundant [52] API call misuses. However, more ne-
newly introducing anf - condition with NULL checks for grained API changes (such as changing only the arguments,
the variable that is returned by a prior API call or will benames or receiver objects of API invocations) were not been
used as the receiver or an argument of a following ARlstematically and extensively studied by existing studies. In
call, e.g.,0API(); => ifo!= null){ 0.API);} . this paper, besides missing and redundant API changes, we
Return value.This sub-category indicates the removeglrther investigate the distributions of replaced APl misuses,
or newly introducedf condition that checks the returnwhich include four categories in detail. For the missing and
value of some APIs, e.go, = API(); a = list.get(0) redundant APl misuses, previous study [1] already introduced
; == 0 = API(); ifo < 0){o = 0} a = list.get(o them (a.k.a. Method Call). To make the article self-contained,

) -
Object stateThis sub-category indicates the removed or
newly introducedf condition relates to some variables
that will be used in an API call immediately, e.g.,=
list.get(i); => if(i > 0){a = list.get(i);}
Importantly, the three sub-categories of Condition are not
orthogonal to each other as offe condition may belong
to multiple categories. We will introduce this in detail in
Section 1lI-C.

Exception. This category includes missing and redundant
exception handlers, following the de nitions in the prior
work [1]. More speci cally, we further divide this category
into two types of ne-grained code changes, i.e., inserting or
deletingTry or catch blocks. The reason is that in the studied
commits, we nd that some xes are related to a complete
try-catch statement, but some others may only invalseh
blocks. Therefore, we analyze them separately. Especially, we
regard ary orcatch as APl-relatedff there exist API calls in
the corresponding code block; otherwise, we consider it as API
irrelevant. Besides, like th€ondition category introduced
above, a code change may involve bagh andcatch blocks.

In such cases, we record these two categories respectively.

Try. This category subjects to addition or deletionrgf
blocks, in which some API invocations reside.

Catch This category subjects to addition or deletion of
catcch blocks, whose corresponding blocks contain
API invocations.

Synchronization. This category includes missing and redun-
dant synchronizations in multi-threaded environments, follow-
ing the previous study by Amann et al. [1]. The difference is

we redundantly explain them brie y.

Missing & Redundant API call. Missing API calenotes
that an API is not called at a certain place, where the API
usage constraint requires the API as a must. For example,
after opening a le and writing data, the API @ile.

close() should be called. Otherwise, errors would be
incurred. This kind of code changes is usually related
to those pairwise APIs that have usage dependency.
Similarly, Redundant API caltepresents that an API is
redundantly used at an improper place. For example, we
cannot call the API ofist.remove() to delete elements

in a list that is being iterated over. Otherwise, exceptions
would be raised. This kind of code changes is usually
caused when the API has side-effects, whose execution
may con ict with the followed functionality.

Replaced argumentfhis category indicates that devel-
opers may pass incorrect arguments or arguments with
wrong orders when invoking an API. This type of code
changes usually appears in classes with multiple methods
with similar functionalities for polymorphism, such as
the rst example shown in Figure 1, where the desired
API is nextint) ~ without arguments. On the contrary, a
wrong APl nextint(int) is used with an argumenged

, Which will constrain the upper bound of the generated
random value. Please note that we consider replaced API
misusesiff the types of arguments do not match before
and after the change (order matters), while it is not our
cases to change the referred object of same types. For
example, the code change replacitoyin nextint(10)

with 100 is not regarded as a replaced APl misuse since
the argument type is not changed and thus the API is not

Before introducing the classi cation process in detail, we IV. EMPIRICAL RESULT ANALYSIS
rst introduce some preliminary concepts and notations: According to the previous sections, we collect a large

De nition 1. An abstract syntax tree (AST) is a partiaﬂumber of API misuses in real-world projects. In this section,
ordered tree whose root node can be represented as a tNYﬂeCOndUCt various empirical studies and discuss the results.

Hivipii; CI, where A. Distributions of APl Misuses
I: denotes the label of the root node of the subtree. (e.qg.,

StringLiteral.)

v: saves the value if it is a leaf node, otherwise?is
(e.q., 4)

p: represents its parent node in a super tree if exis
otherwise is? .

In this research question, we count the number of edit
operations from GumTree for APl misuses and non-AP| mis-
uses, and then analyze the distribution of different categories
Pf API misuses. The result shows that there are 576,515
S%Udied operations involving API misuses, which is about
i- is the index of the root node in a super trpeit is 51:7% of all edit operations (i.e., 48.3% for non.-API misuses).
unde ned ifp= 2. ' Tr_ns nding shows t_hat developers tend to introduce API
C: contains a sequence of immediate child nodes in tmlsusgs frequenFIy In modern software Qevelopment. One
Sljbtree it will be: for leaf nodes IEB%tentlal reason is that developers are using more and more
' ' ' third-party libraries to save development efforts and improve
Finally, based on the description of operations inode quality. To our best knowledge, this is the rst study
GumTree [14], it will be straightforward to give the operatioguantitatively demonstrating the importance of API-misuse in

de nitions under the AST de nition. modern software systems.
. L . TABLE I. Distribution of API misuses
De nition 2. A GumTree operation is one of the following —
) Category Missing Redundant
AST node changes: APT call 147,206 (24.67%) 54,101 (9.38%)
. . ; Synchronization 308 (0.05%) 58 (0.01%)
update((t),to). replace the subtree rootédvith a subtree UL cFecis 11750 (2.04%)| 1,320 (0.23%)
rootedt®, Condition Return value 21,900 (3.80%)| 3,162 (0.55%)
delete(t): deletes subtree rooted notle Object state 62952:7_33(&%2‘(’?)) 2339 Eggggfg
. . . . y . 0 y . 0
|nS.’ert (t, to, |): adds a ne-W nOdeaS thath child of node Try 6,118 (1.06%) 790 (0.14%)
t%if t%is not ?. Otherwise,t is the new root node and Exception Catch 7,183 (1.25%)| 1,152 (0.20%)
. . . 0, 0,
the previous root node will be the only child of ;f;'Receiver 13’3011(021'3918/;) 1716'83/02) (0.34%)
move(t; t%i): moves subtree rooted nodéo be theit™ Rep Name 45,963 (7.97%)
; 0 Replaced API| Rep Args 52,277 (9.07%)
child of nodet”.
Rep Name&Args 20,744 (3.60%)
Particularly, we discard athoveoperations in the mapping Total 220,969 (38.33%)

process as it mainly changes the code structure but not the APTable | presents the distributions of different categories of
itself, which is hard to be automatically analyzed as misuseésP| misuses described in Section IlI-B. In the table, the rst
Next, we use the operations shown in Figure 4 as examplestumn represents the categories of misuses, and the last two
demonstrate the mapping process in detail. According to thelumns represent the number of operationsrussingand
explanation for each category of API misuses in Section llI-Bedundantmisuses, respectively. Particularly, the percentage
the operationdelete(t1) will be classi ed asredundantAPl in the table represents the number of operations over that
call, while the operatiorupdate(t2;t2% will be classied as of all API-related operations (i.e., 576,515). As explained
Replaced namef API call. In particular, when the name andbefore, different categories may overlap each other (e.g.,
arguments of a method call are changed together, the opa¥&JLL checks and Return value). Besides, we also separately
tions will be combined as onReplaced name and argumentdist the number and percentage of operations related to misuses
(e.g., updatingcreateStatement() to prepareStatement(of Replaced API, which is an important category in the study.
string) in Figure 1). For the operatiomove(t4;t5;2), we In addition, for clarity, we omit the operations that are not
simply ignore it and in fact it does not misuse any API. Finallyelated to APl misuses as they are not the focus of this paper.
as for the operation dhsert (t5;13; 2), from the gure we can From this table, we have following ndings.

see that a NULL check condition for the variabiédow is First, API call and Replaced APl misuses are more
inserted, which is the returned value of Afétwindow() .As a prevalent. From the table, the percentages of operations about
consequence, it will be classi ed as missing bdtbLL checks API call and Replaced API are more than 70%. Particularly,
andReturn valueAdditionally, variablewindow is further used 38.33% misuses are about Replaced API, which are more than
by API setwindowAnimations() that has control-dependencyany other types of APl misuses. By analyzing the data, we nd
on the condition w.r.twindow . As a result, it will be classi ed that one important reason for such a large portion of Replaced
asObject stateas well. Thus, one operation may be classi ed\PIl misuses is that most of APIs share similar signatures
into multiple categories irCondition Based on this process,when their functionalities are close. Therefore, if developers
we automatically classify GumTree operations into differemto not well understand the difference between APIs, they tend
categories for further analysis. to be confused and use a wrong API. For example, when one

wants to only get the miliseconds of current timsgstem. bugs of string.lastindexOf(String) , inserting either con-
currentTimeMillis() is a preferable API with high ef ciency. dition or exception handling is reasonable in historical bug-
However, developers tend to misuse the Afel Date(). xing dataset. The ndings show the importance 6fring
getTime() , which is simply a wrapper of the former. Dueand guide developers how to detect and x misuses related to
to the newbate object, the latter APl may cause performancsetring by mining bug- xing dataset.
issues, especially when it is intensively used in time-critical Second, most Replaced API misuse patterns are related
programs. Therefore, if possible, it is better to directly use the the names and arguments in the same classyen though
API system.currentTimeMillis() to speed up the underlying the Replaced Receiver is the majority in Table I. For example,
system. The result demonstrates the importance of Repladedelopers tend to misunderstand betweesyer.valueOf
APl misuses, and more research efforts are informed to (8&ing) and Integer.parselnt(String) , where the former
dedicated to detecting such misuses. returns aninteger object while the latter returns a primitive
Second, missing APl is more prevalent than redundant. int value.
The results show that developers tend riss some API Third, it is possible to design an automated technique
calls or handlers (such as Condition, Synchronization, abhdsed on the mined patterns to detect unknown misuses
Exception) rather than writingedundantones. For example, in other projects. For example, there is a misuse pattern
the percentage of missing API calls is 24.67%, almost thr&#e.mkdir()=>File.mkdirs() in the ranking list. We have
times higher than the opposite. Similarly, the percentage @étected such misuses existing in Apache projects, and one
missing condition is also much higher than that of redundastibmitted pull request has been accepted by developers, shown
condition (11.02% vs 1.53%). in Figure 7. In fact, there are many valuable patterns in the
ranking list and we will introduce how we are inspired to
Finding 1: (1) API call and Replaced API are the most Improve misuse detection in the following two sections.
prevalent APl misuses, and Replaced API misuses ac-
counts for the largest portion among all misuses, calling | Finding 2: (1) APl misuses related to clagsa.lang
for new detection approaches. (2) Developers tend|to| .String account for the vast majority of all misuse
miss some components to satisfy the constraint off a| patterns. (2) Most frequent Replaced API misuse pattefns
certain API. are related to the names and arguments in the same class.
(3) The frequent API misuses in Table Il informs new
misuse detection techniques.

B. Frequencies of APl Misuse Patterns

In Section IV-A, we have performed quantitative analysis on
API misuses. In this research question, we further qualitatively Study of APl Misuse Detection dUBENCH
analyze the misuse patterns mined from the studied dataset. Win this section, we present the potential recall of misuse de-
rst extract a ranked list for each misuse category according tection on the recently widely used benchmarkBENCH [1],
the cross-project frequencies. The reason we consider crdd®] with the patterns mined from our dataset. We manually
project frequencies is that the mined patterns should be mairealyze the x patterns in the MBENCH and then check
helpful in detecting unknown misuses if they widely exist invhether the same patterexist in the studied dataset. We
more various projects. We remove patterns relategirong assume that an ideal detection approach can accurately mine
and logging because they are usually for debugging andlPI-misuse patterns from historical xes if at least one x
maintenance purposes; we also remove APIs with “Androidfistance exists in the dataset. In addition, to explore the
and “Javax” since we target general Java programs. Tablecmplementariness to existing approaches, we also include
presents the popular misuse patterns for each general categbry. results of state-of-the-art misuse detection approaches,
Column 1 denotes the category names. Column 2 preseinisuding MutAPI [15], DMMC [2], Jadet [8], Tikanga [51]
the top-5 popular patterns for each category. Column 3 aadd GrouMiner [47].
4 show the number of projects in which the corresponding Figure 5 presents the overlaps of misuses detected by
pattern appeared and the total number of pattern occurrena#ferent approaches, where “This work” denotes the results
respectively. From this table we have following ndings. mined from our dataset. As a result, the 53 misuse examples in

First, APl misuses related to classjava.lang.String MUBENCH involve 32 different kinds of API-misuse patterns
account for the vast majority of all misuse patterns. (multiple examples may relate to a same pattern), and 12
For example, 18 out of 45 misuses in all categories are frgpatterns can be found in our dataset, which correspond to 22
the class ofsting . Also, for both missing APl and missing misuse examples. In other words, 22 misuses i0BENCH
condition misuses, all top-5 API patterns are relatesttiog potentially can be detected with the patterns mined from
. Speci cally, we have the following observations. (1) For théistorical bug xes. Besides, 7/12 misuse patterns cannot be
missing condition, most patterns miss checking if the indedetected by any existing approaches, indicating that mining
of a substring or a character insides@ing is valid, such as misuse patterns from large-scale historical bug xes has the
String.charAt(int) . (2) There are various ways to x bugspotential to further improve the effectiveness of API misuse
related to API misuses. For example, to deal with potentidetection. For example, the APl misusesofng.getBytes()

TABLE llI: Detected API misuses and the feedback of submitted pull requests.

Pattern Reported | Sampled | Con rmed Submitted | Accepted | Rejected
JSONObject.getString(String)
= > JSONObject.optString(String) 1 7 13 13 3 0
JSONObject.getJSONArray(String) 6 6 3 2 0 0
=> JSONObject.optJISONArray(String)
JSONObject.getJSONObject(String) 9 9 1 1 1 0
= > JSONODbject.optJISONODbject(String)
java.io.File.mkdir()
= > java.io.File.mkdirs() 16 16 10 10 6 4
String.replaceAll(String,String)
= > String.replace(String,String) 1798 100 87 46 16 8
java.sgl.Connection.createStatement()
= > java.sgl.Connection.prepareStatement(String) 70 70 9 9 0 0
concurrent.Executors.newCachedThreadPool() 9 9 4 3 1 0
= > concurrent.Executors.newFixedThreadPool(int)
Date.getTime()
= > java.lang.System.currentTimeMillis() 339 100 99 20 10 3
java.io.FileWriter.close()
= > java.io.BufferedWriter.close() & & 61 39 20 0
String.equals(String)
= > Objects.equals(String,String) 5203 100 73 6 0 0
Total 7,541 501 360 149 57 15
private void migrateTagsInResult(String private Mpack downloadMpackMetadata(String
hostAddress, ...){ mpackURI) throws |OException {
File stagingDir = new File(mpackStaging.
updateTagsForHit(updated,hit. getString ("_id") toString()+File.separator +
yeer); MPACK_TAR_LOCATION);
+++ updateTagsForHit(updated,hit. optString ("_id") if (IstagingDir.exists()) {
yees)s stagingDir. mkdir()
+++ stagingDir. mkdirs() ;
if(hitsObject.getInt("total")>currentOffset){ } .} [Inttps://github.com/apache/ambari/
migrateTagsInResult(...,rJSON. getString (" commit/b99bb28
_scroll_id"));
+++ _ migrateTagsInResult(...,rJSON. optString (" Fig. 7: Accepted File.mkdir() misuse
_scroll_id"));
} /ihttps://github.com/apache/unomi/commit/ private v0|d_ runBenchmarkTasks() throws
Exception {

c447224

. . . . ExecutorService executor = Executors.
Fig. 6: Accepted JSONObject.getString() misuse newCachedThreadPool()

. .. . +++ ExecutorService execdtor = Executors.
rules. Effective and automated rule mining techniques shot newFixedThreadPool(tasks.size()) -
be further explored, such as combining machine learnii
techniques [52] to characterize more context features, etc.

Details of API-misuse patterns.For clarity, we omit the
class scope of APIs in Table Il if no ambiguity will be caused. Fig. 8: AcceptednewCachedThreadPool() ~ Mmisuse
JSONODbject.getString(String)=>JSONObject.optString
(String) . The former API will throwJSONException when
the JsoNObject does not has the query attribute (i.e.,
given argument), which may crash the program if it is
not handled. Therefore, to detect such misuses, we seat
the usages of the API where the exception is not properlyExecutors.newCachedThreadPool()=>Executors.
tackled. Figure 6 shows one accepted misuse in proj@eFixedThreadPool(int) . Both APIs can create a
Apache UnomiIn this example, the queried keys may nothread pool in multiple-thread environment. However,
exist and exceptions will be thrown and crash the programgwCachedThreadPool) ~ has no bounded thread number
As a result, they are immediately conrmed and xed®nd newFixedThreadPool(int) can set the maximal thread
after reporting to maintainersyetJSONArray(String) and number. In this caseyewCachedThreadPool() may consume
getISONObject(String) are similar. more and more memory if it is not constrained and the system
File.mkdir()=>File.mkdirs() . Both File.mkdir() and Wil risk in crashing and throwingoutofMemoryException
File.mkdirs() are used to create a directory and return B0 detect this kind of misuse, we focus on the cases that
boolean value to indicate whether the creation succeeds€¥gcutors created fromewCachedThreadPool) ~ submit tasks
not. The difference is the latter can recursively create tie @ loop without constraints. Figure 8 shows one accepted
directories when nested paths do not exist, wiiter cannot. Misuse in projecApache bookkeeper
The failure of directory creation may cause le access errors String.replaceAll(String,String)=>String.replace
during program running, and is hard to debug. Therefore, whgtring,String) . Both APIs replace all occurrences of

} //ht.t.r.Js://github.com/apache/bookkeeper/commit
/0988e12

creating a nested directory, the return value of the API call
thghould be checked to avoid potential errors. Otherwigeirs
should be used to ensure the success of creation. Figure 7
pﬁws one accepted misuse in projagiache Helix

a sting with others. However, the rst argument for| Finding 4: Based on the 10 Replaced misuse patterns,
replaceAll is a regular expression, while plain text fof we have reported 149 misuses in latest Apache projects;
replace . Compiling regex patterns will be more compley 57 of them have been xed by project maintainers so far.
and consequently slower so we detect the misuse of the Ari

replaceAll if it takes a plainstring as the argument. V. THREATS TOVALIDITY
Connection.createStatement()=>Connection. The threats to external validity lie in the dataset used. To
prepareStatement(String) . Both APIs are used to executecollect a large set of data for analysis, we mined bug- xing

SQL statements in Java. However, the former will highlgommits from GitHub repositories. The dataset may be noisy
degrade the performance of database access if intensivigly different reasons (i.e., not real bug xes). We also de ne
executing the same SQL statements in a loop. In thiP| misuses as code edit operations related to some APIs in a
case, prepareStatement(String) should be used to enablepug x. In fact, it may also inaccurate results. The reasons are
the database to precompile the SQL statements and gaidfold. First, APl misuses may occur in regular code changes,
a better performance. We detect this kind of misuse Ryhile we compute the percentage of APl misuses over the
focusing on the case that an objectssitement created by operations from bug- xing commits. Second, edit operations
createStatement() is used in a loop. related to APIs may be not real API misuses.

Date.getTime() = > System.currentTimeMillis() . We de- The threats to internal validity relate to our implementation.
tect this kind of misuses by checking if the object of clasgo reduce errors, we use GumTree to extract AST operations,
Date only invokes the methodetTime() . The reason is that which is widely used in previous studies [30], [36], [37], [56].
new Date() for creating theDate object is simply a wrapper However, we cannot get certain misuse categories, such as

of method system.currentTimenMillis() . If it is intensively missing NULL checks directly from GumTree. Therefore, we
invoked in the program, the performance will be damagegbvise GumTree by adding detailed program analysis to map
Using the methodsystem.currentTimeMillis() can also operations to our classications. To mitigate the threats of
avoid creating the temporanyate object. categorization noise from GumTree, we sample 100 opera-
FileWriter.close() = > Bufferedwriter.close(). tions for each category and con rm that 76% operations are
Indeed, this misuse is caused by creating a wrong writggrectly classi ed. Furthermore, we carefully review our code
object, i.e., Filewriter ~ but not Bufferedwriter . Large and scripts to ensure their correctness as much as we can.
amount of input and output (I0) operations will signi cantly
affect the performance of the prograrBufferedwriter VI. CONCLUSION
can effectively reduce the times of IO access with caches.In this paper, we conduct an extensive empirical study
Therefore, we detect such misuses by searchirgriter on API misuses based on 528,546 bug- xing commits. We
object that is intensively used in a loop. extract ne-grained edit operations on AST of source code
String.equals(String) = > Objects.equals(String, and classify them into different categories of APl misuses.

string) . Both APIs are used to check if twéwring values We also extract various frequent API-misuse patterns based
are same. However, It is possible that the rsting on the categories. The results show that APl misuses are
in String.equals(String) may be NULL so that the prominent in practice and provide a set of guidelines for future
NullPointerException would be thrown. We detect thisresearch. Finally, based on our dataset, we perform a user
kind of misuses by checking the possibility of causingtudy to manually analyze the usage constraints of 10 patterns
NullPointerException . That is, there is no guard conditionto explore whether the mined patterns can guide the design
to check the nullness of the object before using. of future API-misuse detection tools. The results show that
As discussed above, a lot of submitted misuses have b&gnmisuses (out of 149 reported misuses) have been xed,
accepted by maintainers. However, there are 15 misuses arérgicating the importance of historical APl misuses and the
jected. We investigate these misuses and nd some major re@emising future for API-misuse detection. However, the cur-
sons as follows. (1) There are no performance differences lpent implementation still depends on our handcrafted detection
tween two APIs in a sample or small project. For example, iles. Effective and automated rule mining techniques should
projectApache CXFthe project maintainer rejected our subpe further explored, such as combining machine learning [52]
mitted misuse by claiming thalystem.currentTimeMillis() to characterize more context features, etc.
and new Date().getTime() would not make the difference All experimental data and source code are open-source that
since this case occurs in a sample (small) project undgin be downloaded at: https:/github.com/BID3/BID3.
Apache CXF In Apache NetBeansthe project maintainer
doubts that the chang®e.mkdir()=>File.mkdirs() is just
a theoretical problem so they reject our pull request. (2) This work was partially supported by National Key Re-
The submitted cases will change the code style of the ent#earch and Development Program of China under Grant
project. For example, in projeétpache NetBeanshe project No. SQ2019YFE010068, National Science Foundation under
maintainers claim that the changete.getTime() =>System Grant Nos. CCF-1763906 and CCF-1942430, Alibaba, and
.currentTimeMillis() will reduce the readability since otherNational Natural Science Foundation of China under No.
Date cases can not be changed due to the context. 619220083.

ACKNOWLEDGEMENTS

(1]

(2]

(3]
(4]

(5]
(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES [22]

S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectdEEE Transactions
on Software Engineering018.

M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,ACM Transactions on Software Engineering
and Methodology (TOSEMyol. 22, no. 1, p. 7, 2013. (24]
“Github website,” 2019. [Online]. Available: https://github.com/
“Sourceforge website,” 2019. [Online]. Available: https://sourceforge[25]
net/

“Jira website,” 2019. [Online]. Available: https://www.atlassian.com/
software/jira/

M. Martinez and M. Monperrus, “Mining software repair models for,
reasoning on the search space of automated program xEmpirical [26]
Softw. Engg. vol. 20, no. 1, pp. 176-205, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1007/s10664-013-9282-8

C. Lindig, “Mining patterns and violations using concept analysis,” ir{27]
The Art and Science of Analyzing Software Dat&lsevier, 2015, pp.
17-38.

A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage[zg]
anomalies,” inProceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineeringACM, 2007, pp. 35-44.

M. Acharya and T. Xie, “Mining api error-handling speci cations from (29]
source code,” irinternational Conference on Fundamental Approaches
to Software Engineering Springer, 2009, pp. 370-384.

S. Thummalapenta and T. Xie, “Mining exception-handling rules d30l
sequence association rules,” Rroceedings of the 31st International
Conference on Software EngineeringlEEE Computer Society, 2009,

pp. 496-506.

——, “Alattin: Mining alternative patterns for detecting neglected condil31]
tions,” in Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software EngineeringlEEE Computer Society, 2009,

pp. 283-294.

S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini[32]
“Mubench: a benchmark for api-misuse detectors,2016 IEEE/ACM

13th Working Conference on Mining Software Repositories (MSR)
IEEE, 2016, pp. 464-467.

“Github archive website,” 2019. [Online]. Available: https:/iwww. [33]
gharchive.org/

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,Piaceedings
of the 29th ACM/IEEE international conference on Automated software
engineering ACM, 2014, pp. 313-324.

M. Wen, Y. Liu, R. Wu, X. Xie, S.-C. Cheung, and Z. Su, “Exposing
library api misuses via mutation analysis,” iRroceedings of the [35]
41st International Conference on Software EngineerintEEE Press,
2019, p. 866877. [Online]. Available: https://doi.org/10.1109/ICSE.
2019.00093

L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation testing[36]
in 2010 IEEE International Conference on Software Maintenance
IEEE, 2010, pp. 1-10.

G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring project-speci c bug
patterns for detecting sibling bugs,” iRroceedings of the 2013 9th [37]
Joint Meeting on Foundations of Software EngineerindA\CM, 2013,

pp. 565-575.

D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not to@8]
many,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineeringCM, 2007,

pp. 9-14.

C. C. Williams and J. K. Hollingsworth, “Automatic mining of source[39]
code repositories to improve bug nding techniqud&EE Transactions

on Software Engineeringiol. 31, no. 6, pp. 466—480, 2005.

X. Li, W. Li, Y. Zhang, and L. Zhang, “Deep : Integrating multiple fault
diagnosis dimensions for deep fault localization,"Hroceedings of the

28th ACM SIGSOFT International Symposium on Software Testing afD]
Analysis 2019, pp. 169-180.

X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,”"Proceedings of the ACM on Programming Languages
vol. 1, no. OOPSLA, pp. 1-30, 2017.

(23]

L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to
localize developer faults for evolving software,” @OPSLA 2013, pp.
765-784.

L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” 2011 27th IEEE
International Conference on Software Maintenance (ICSROL1, pp.
23-32.

M. Papadakis and Y. Le Traon, “Metallaxis- : mutation-based fault
localization,” Software Testing, Veri cation and Reliabilityol. 25, no.
5-7, pp. 605-628, 2015.

S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” i2014 |IEEE Seventh Interna-
tional Conference on Software Testing, Veri cation and Validat®@ol4,

pp. 153-162.

Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang,
“Can automated program repair re ne fault localization? a unied
debugging approach,” itSSTA 2020, to appear.

X. B. D. Le, D. Lo, and C. L. Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER)arch 2016, pp. 213-224.

A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” inProceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analy&i49, pp.
19-30.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repaigee transactions on
software engineeringvol. 38, no. 1, pp. 54-72, 2011.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code Piaceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis 2018, pp. 298-309.

H. Zhong and Z. Su, “An empirical study on real bug xes/
in Proceedings of the 37th International Conference on Software
Engineering ser. ICSE '15, 2015, pp. 913-923. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818864

M. Soto, F. Thung, C. Wong, C. Le Goues, and D. Lo, “A deeper look
into bug xes: Patterns, replacements, deletions, and addition2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR) May 2016, pp. 512-515.

K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of
bug x patterns,” Empirical Softw. Engg.vol. 14, no. 3, pp. 286-315,
2009. [Online]. Available: http://dx.doi.org/10.1007/s10664-008-9077-5

34] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing

faults to enable controlled testing studies for java programspPror
ceedings of the 2014 International Symposium on Software Testing and
Analysis 2014, pp. 437-440.

V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a bug dataset: Anatomy of 395
patches from defects4j,” i2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANERJEE,
2018, pp. 130-140.

M. Martinez and M. Monperrus, “Coming: A tool for mining change
pattern instances from git commits,” B019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings
(ICSE-Companion) IEEE, 2019, pp. 79-82.

F. Madeiral, T. Durieux, V. Sobreira, and M. Maia, “Towards an
automated approach for bug x pattern detectiomfXiv preprint
arXiv:1807.112862018.

Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: A large-scale empirical study,” 2017 IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories (M3R)y
2017, pp. 413-424.

N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in java: Challenges and vulnerabilitiesPioceedings

of the 40th International Conference on Software Engineerisgy.
ICSE '18. New York, NY, USA: ACM, 2018, pp. 372-383. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180201

Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in javascript,” ifProceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Enginegsag
FSE 2016. New York, NY, USA: ACM, 2016, pp. 144-156. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950308

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[61]

R. Yue, N. Meng, and Q. Wang, “A characterization study of repeatd81]
bug xes,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME2017, pp. 422-432.

H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan,
“A study of repetitiveness of code changes in software evolution,” i[52]
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE)Nov 2013, pp. 180-190.

B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and

P. Devanbu, “On the "naturalness” of buggy code,” Pmoceedings [53]
of the 38th International Conference on Software Engineering
ser. ICSE '16. ACM, 2016, pp. 428-439. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884848

B. Livshits and T. Zimmermann, “Dynamine: nding common eIror[5
patterns by mining software revision histories,” ®RCM SIGSOFT
Software Engineering Notesol. 30, no. 5. ACM, 2005, pp. 296—
305.

Z. Liand Y. Zhou, “Pr-miner: automatically extracting implicit program-[ss]
ming rules and detecting violations in large software code,AbM
SIGSOFT Software Engineering Natesl. 30, no. 5. ACM, 2005, pp.
306-315. 56
M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing methoo[]
calls in object-oriented software,” iRuropean Conference on Object-
Oriented Programming Springer, 2010, pp. 2-25.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.[57]
Nguyen, “Graph-based mining of multiple object usage patterns,” in
ESEC/FSE New York, NY, USA: ACM, 2009, pp. 383-392. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595767 [58]
T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug xes in object-oriented programs,” mo-
ceedings of the 32Nd ACM/IEEE International Conference on Softwaf@9]
Engineering-Volume.1 ACM, 2010, pp. 315-324.

M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive infer-
ence of function precedence protocols,2ith International Conference

on Software Engineering (ICSE'Q7May 2007, pp. 240-250.

M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static speci catif60]
inference using predicate mining,” MCM SIGPLAN Noticesvol. 42,
no. 6. ACM, 2007, pp. 123-134.

“Infer website,” 2019. [Online]. Available: https://fbinfer.com/

(62]

A. Wasylkowski and A. Zeller, “Mining temporal speci cations from
object usage,” inProceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineerisgy. ASE '09, 2009,
pp. 295-306. [Online]. Available: https://doi.org/10.1109/ASE.2009.30
T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recommending
api usages for mobile apps with hidden markov model,2@15 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) IEEE, 2015, pp. 795-800.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug- xing
patches in the wild via neural machine translation,’ASE 2018, pp.
832-837.

J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transfor-
mations from singular examples via big code,’2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE)
IEEE, 2019, pp. 255-266.

A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for javaACM Trans. Softw. Eng.
Methodol, vol. 14, no. 1, p. 141, Jan. 2005.

K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon, “Mining
x patterns for ndbugs violations,”|IEEE Transactions on Software
Engineering 2018.

A. Hajnal and I|. Forgacs, “A precise demand-driven de nition-use
chaining algorithm,” inProceedings of the Sixth European Conference
on Software Maintenance and Reengineerikigrch 2002, pp. 77-86.

M. J. Harrold and M. L. Soffa, “Ef cient computation of interprocedural
de nition-use chains,’ACM Trans. Program. Lang. Sysho. 2, pp. 175-
204, 1994.

S. Nielebock, R. Heudiller, and F. Ortmeier, “Commits as a basis
for api misuse detection,” irProceedings of the 7th International
Workshop on Software Miningser. SoftwareMining 2018. New
York, NY, USA: ACM, 2018, pp. 20-23. [Online]. Available:
http://doi.acm.org/10.1145/3242887.3242890
“Findbugs website,” 2019. [Online]. Available:
sourceforge.net/

“Spotbugs website,” 2019. [Online]. Available: https://spotbugs.github.
io/

http:// ndbugs.

	introduction
	Background and Related Work
	Analysis of Historical Bug Fixes
	Studies on API-misuse Detection

	Empirical Study
	Data Collection
	Categorization of API Misuses
	Edit Operation Extraction

	Empirical Result Analysis
	Distributions of API Misuses
	Frequencies of API Misuse Patterns
	Study of API Misuse Detection on MuBench
	Study of API Misuse Detection on Apache Projects

	Threats to Validity
	Conclusion

